IntroductionEmbryonic chromosomal abnormalities represent a major causative factor in early pregnancy loss, highlighting the importance of understanding their role in spontaneous abortion. This study investigates the potential correlation between chromosomal abnormalities and spontaneous abortion using copy number variation sequencing (CNV-seq), a Next-Generation Sequencing (NGS) technology.MethodsWe analyzed Copy Number Variations (CNVs) in 395 aborted fetal specimens from spontaneous abortion patients by CNV-seq. And collected correlated data, including maternal age, gestational week, and Body Mass Index (BMI), and analyzed their relationship with the CNVs.ResultsOut of the 395 cases, 67.09% of the fetuses had chromosomal abnormalities, including numerical abnormalities, structural abnormalities, and mosaicisms. Maternal age was found to be an important risk factor for fetal chromosomal abnormalities, with the proportion of autosomal trisomy in abnormal karyotypes increasing with maternal age, while polyploidy decreased. The proportion of abnormal karyotypes with mosaic decreased as gestational age increased, while the frequency of polyploidy and sex chromosome monosomy increased. Gene enrichment analysis identified potential miscarriage candidate genes and functions, as well as pathogenic genes and pathways associated with unexplained miscarriage among women aged below or over 35 years old. Based on our study, it can be inferred that there is an association between BMI values and the risk of recurrent miscarriage caused by chromosomal abnormalities.DiscussionOverall, these findings provide important insights into the understanding of spontaneous abortion and have implications for the development of personalized interventions for patients with abnormal karyotypes.