Increasing the population density of target species is a major goal of ecosystem and agricultural management. This task is especially challenging in hazardous environments with a high abundance of natural enemies such as parasites and predators. Safe locations with lower mortality have been long considered a beneficial factor in enhancing population survival, being a promising tool in commercial fish farming and restoration of threatened species. Here we challenge this opinion and revisit the role of behavior structuring in a hostile environment in shaping the population density. We build a mathematical model, where individuals are structured according to their defensive tactics against natural enemies. The model predicts that although each safe zone enhances the survival of an individual, for an insufficient number of such zones, the entire population experiences a greater overall mortality. This is a result of the interplay of emergent dynamical behavioral structuring and strong intraspecific competition for safe zones. Non-plastic structuring in individuals’ boldness reduces the mentioned negative effects. We demonstrate emergence of non-plastic behavioral structuring: the evolutionary branching of a monomorphic population into a dimorphic one with bold/shy strains. We apply our modelling approach to explore fish farming of salmonids in an environment infected by trematode parasites.