We propose a new internal evolution model for the dwarf planet Ceres matching the constraints on Ceres' present internal state from the Dawn mission observations. We assume an interior differentiated into a volatile‐dominated crust and rocky mantle, and with remnant brines in the mantle, all consistent with inferences from the Dawn geophysical observations. Simulations indicate Ceres should preserve a warm crust until present if the crust is rich in clathrate hydrates. The temperature computed at the base of the crust exceeds 220 K for a broad range of conditions, allowing for the preservation of a small amount of brines at the base of the crust. However, a temperature ≥250 K, for which at least 1 wt.% sodium carbonate gets in solution requires a crustal abundance of clathrate hydrates greater than 55 vol.%, a situation possible for a narrow set of evolutionary scenarios.