Internal transport barriers in tokamak plasmas are explored in order to improve confinement and stability beyond the reference scenario, used for the ITER extrapolation, and to achieve higher bootstrap current fractions as an essential part of non-inductive current drive. Internal transport barriers are produced by modifications of the current profile using external heating and current drive effects, often combined with partial freezing of the initial skin current profile. Thus, formerly inaccessible ion temperatures and Q eq DT values have been (transiently) achieved. The present paper reviews the state of the art of these techniques and their effects on plasma transport in view of optimizing the confinement properties. Implications and limits for possible steady state operations and extrapolation to burning plasmas are discussed.