Abstract. Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izaña (28° N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N), only one of them being significant; 3) the highest latitude stations Harestua (60° N), Kiruna (68° N) and Ny-Ålesund (79° N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost stratosphere at the two mid-latitude stations, and at Ny-Ålesund. We find smaller, but significant trends for the 18–27 km layer at Kiruna, Harestua, Jungfraujoch, and Izaña. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izaña. These ozone partial columns trends are discussed and compared with previous studies.
A detailed spectrally resolved extraterrestrial solar spectrum (ESS) is important for line‐by‐line radiative transfer modeling in the near‐IR. Very few observationally based high‐resolution ESS are available in this spectral region. Consequently, the theoretically calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS, which is derived using the Langley technique applied to calibrated observations using a ground‐based high‐resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000 to 10,000 cm–1 (1–5 µm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite‐based Atmospheric Chemistry Experiment‐FTS ESS, in the spectral region where they overlap, and good agreement with other ground‐based FTS measurements in two near‐IR windows. However, there are significant differences in the structure between the CAVIAR ESS and spectra from semiempirical models. In addition, we found a difference of up to 8% in the absolute (and hence the wavelength‐integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, because the coverage factor k = 2 (or 95% confidence limit) uncertainties in the two sets of observations do not overlap. Because the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated “loss” of solar irradiance of about 30 W m–2 in the near‐IR that would have to be compensated by an increase at other wavelengths.
We report the application of an infrared (IR) differential absorption Lidar (DIAL) system (also capable of ultra violet measurements) built at the National Physical Laboratory (NPL), UK, to field measurements of total site emissions (controlled and fugitive) from petrochemical and landfill installations. The validation of the IR-DIAL was carried out via a series of controlled field experiments including comparison to GC analysis and tests against controlled methane releases from a test stack, all detailing agreements on the order of ±20%. In volatile organic compound (VOC) measurements at a UK petrochemical site it was found that the American Petroleum Institute's methodology of the time for calculating the emitted flux underestimated by a factor of 2.4. Also, in a similar field trial it was found that scaling traditional point measurements at easily accessible flanges and valves to represent all flanges and valves on a site led to an underestimation by a factor of 6. In addition to petrochemical examples we also report field measurements from a landfill site to demonstrate the advantageous of the DIAL technique for monitoring area emission sources. In this case study it was found that active (still being filled) cells resulted in significantly greater VOC emission rates (30 kg h(-1)) than closed (≤ 10 kg h(-1)).
Respiration chambers are one of the primary sources of data on methane emissions from livestock. This paper describes the results from a coordinated set of chamber validation experiments which establishes the absolute accuracy of the methane emission rates measured by the chambers, and for the first time provides traceability to international standards, assesses the impact of both sensor and chamber response times on measurement uncertainty and establishes direct comparability between measurements made across different facilities with a wide range of chamber designs. As a result of the validation exercise the estimated T.D. Gardiner et al. 2absolute uncertainty associated with the overall capability across all facilities reduced from 25.7% (k=2, 95% confidence) before the validation to 2.1% (k=2, 95% confidence) afterwards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.