Nowadays, forest inventories are frequently carried out using a combination of field measurements and remote sensing data, often acquired with light detection and ranging (LiDAR) sensors. Several studies have investigated how three-dimensional laser scanning point clouds from different platforms can be used to acquire information traditionally collected with forest instruments, such as hypsometers and callipers to detect single-tree attributes like tree height and diameter at the breast height. The present study has tested the performances of the ZEB1 instrument, a type of hand-held mobile laser scanner, for single-tree attributes estimation in pure Castanea sativa Mill. stands cultivated for fruit production in Central Italy. In particular, the influence of walking scan path density on single-tree attributes estimation (number of trees, tree position, diameter at breast height, tree height, and crown base height) was investigated to test the efficiency of field measures. The point clouds were acquired by walking along straight lines drawn with different spacing: 10 and 15 m apart. A single-tree scan approach, which included walking with the instrument around each tree, was used as reference data. In order to evaluate the efficiency of the survey, the influence of the walking scan path was discussed in relation to the accuracy of single-tree attributes estimation, as well as the time and cost needed for data acquisition, pre-processing, and analysis. Our results show that the 10 m scan path provided the best results, with an omission error of 6%; the assessment of single-tree attributes was successful, with values of the coefficient of determination and the relative root mean square error similar to other studies. The 10 m scan path has also proved to decrease the costs by about €14 for data pre-processing, and a saving of time for data acquisition and data analysis of about 37 min compared to the reference data.