Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature‐induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature–size (T–S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature–size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature‐dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T–S responses can be explained by the ‘Ghost of Oxygen‐limitation Past’, whereby the resulting (evolved) T–S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T–S responses vary considerably across species, but some of this variation is predictable. Body‐size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole‐organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end‐of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T–S responses but also variation in T–S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature‐induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature–size (T–S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature–size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature‐dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T–S responses can be explained by the ‘Ghost of Oxygen‐limitation Past’, whereby the resulting (evolved) T–S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T–S responses vary considerably across species, but some of this variation is predictable. Body‐size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole‐organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end‐of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T–S responses but also variation in T–S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
The developmental regulation of body size is a fundamental life-history characteristic that in most animals is tied to the transition from juvenile to adult form. In holometabolous insects this transition is ostensibly initiated at the attainment of a critical weight in the final larval instar. It has been hypothesized that the size-sensing mechanism used to determine attainment of critical weight exploits oxygen limitation as a larvae grows beyond the oxygen-delivery capacity of its fixed tracheal system; that is, developmentally-induced cellular hypoxia initiates the synthesis of the molting hormone ecdysone by the prothoracic gland. We tested this hypothesis in Drosophila by assaying cellular hypoxia throughout the third-larval instar at 21 and 10 kPa O2, using the activity of the HIF-signalling pathway as a measure of hypoxia. While HIF-signalling was elevated at low levels of environmental O2 it did not markedly increase during development at either oxygen level, and was only suppressed by hyperoxia after feeding had ceased. Further, changes in HIF-signalling in the prothoracic gland alone did not alter body size or developmental time in a way that would be expected if cellular hypoxia in the prothoracic gland was part of the critical weight mechanism. Our data do show, however, that reduced HIF-signalling in the prothoracic gland decreases survival and retards development at 10 kPa O2, suggesting that prothoracic HIF-signaling is a necessary part of the beneficial plasticity mechanism that controls growth and development in response to low oxygen level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.