Summary1. Spatiotemporal variation in the degree of melanism is often considered in the context of thermal adaptation, melanism being advantageous under suboptimal thermal conditions. Yet, other mutually nonexclusive explanations exist. Analysis of geographical patterns combined with laboratory experiments on the mechanisms of morph induction helps to unveil the adaptive value of particular cases of polyphenism. 2. In the context of the thermal melanism hypothesis and seasonal adaptations, we explored an array of environmental factors that may affect the expression and performance of nonmelanic vs. melanic larval morphs in different latitudinal populations of the facultatively bivoltine moth Chiasmia clathrata (Lepidoptera: Geometridae). 3. Geographical variation in larval coloration was independent of average temperatures experienced by the populations in the wild. The melanic morph was, however, more abundant in dry than in mesic habitats. In the laboratory, the melanic morph was induced especially under a high level of incident radiation but also at relatively high temperatures, but independently of photoperiod. Melanic larvae had higher growth rates and shorter development times than the nonmelanic ones when both temperature and the level of incident radiation were high. 4. Our results that melanism is induced and advantageous in warm desiccating conditions contradict the thermal melanism hypothesis for this species. Neither has melanism evolved to compensate time constraints due to forthcoming autumn. Instead, larvae solve seasonal variation in the time available for growth by an elevated growth rate and a shortened larval period in the face of autumnal photoperiods. The phenotypic response to the level of incident radiation and a lack of adaptive adjustment of larval growth trajectories in univoltine populations underpin the role of deterministic environmental variation in the evolution of irreversible adaptive plasticity and seasonal polyphenism.
Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure ( ) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar (Lepidoptera: Noctuidae) larvae to temperature and moderate manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing , as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of on the critical mass was sex specific; high had a positive effect only in females, whereas low had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses.
Climate change has shifted geographical ranges of species northwards or to higher altitudes on elevational gradients. These changes have been associated with increases in ambient temperatures. For ectotherms in seasonal environments, however, life history theory relies largely on the length of summer, which varies somewhat independently of ambient temperature per se. Extension of summer reduces seasonal time constraints and enables species to establish in new areas as a result of over-wintering stage reaching in due time. The reduction of time constraints is also predicted to prolong organisms' breeding season when reproductive potential is under selection. We studied temporal change in the summer length and its effect on species' performance by combining long-term data on the occurrence and abundance of nocturnal moths with weather conditions in a boreal location at Värriötunturi fell in NE Finland. We found that summers have lengthened on average 5 days per decade from the late 1970s, profoundly due to increasing delays in the onset of winters. Moth abundance increased with increasing season length a year before. Most of the species occurrences expanded upwards in elevation. Moth communities in low elevation pine heath forest and middle elevation mountain birch forest have become inseparable. Yet, the flight periods have remained unchanged, probably due to unpredictable variation in proximate conditions (weather) that hinders life histories from selection. We conclude that climate change-driven changes in the season length have potential to affect species' ranges and affect the structure of insect assemblages, which may contribute to alteration of ecosystem-level processes.
Roads are a growing mosaic in the landscape, splitting and reducing the area of natural habitats of organisms. To examine the effects of large roads on insect movements, the Egyptian cotton leaf worm moth Spodoptera littoralis was used as a model species in a mark-recapture experiment. The flight of male moths towards female sexual pheromone across a motorway and an open field was compared. Road constructions may disrupt movements of individual insects as recapture probability was lower when moths had to cross a road to reach the bait compared with that in undisturbed natural habitat. The observed road effect may appear a very general response among insects as noctuids are generally highly mobile. We conclude that increasing fragmentation of natural habitats due to road networks may not only affect many insect populations worldwide, but also deteriorate ecosystem function and services as insects are important pollinators of natural and cultivated plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.