For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.
The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45: 1-26.
Animal mitochondrial DNA is normally inherited clonally from a mother to all her offspring. Mitochondrial heteroplasmy, the occurrence of more than one mitochondrial haplotype within an individual, can be generated by relatively common somatic mutations within an individual, by heteroplasmy of the oocytes, or by paternal leakage of mitochondria during fertilization of an egg. This biparental inheritance has so far been reported only in mice, mussels, Drosophila, and humans. Here we present evidence that paternal leakage occurs in a bird, the great tit Parus major. The major and minor subspecies groups of the great tit mix in the middle Amur Valley in far-eastern Siberia, where we found a bird that possessed the very distinct haplotypes of the two groups. To our knowledge this is the first report of paternal leakage in birds.
The great tit complex is divided into four groups, each containing several subspecies. Even though the groups are known to differ markedly on morphological, vocal and behavioural characters, some hybridization occurs in the regions where they meet. The great tit has often been referred to as an example of a ring species, although this has later been questioned. Here, we have studied the genetic structure and phylogenetic relationships of the subspecies groups to clarify the evolutionary history of the complex using control region sequences of the mitochondrial DNA. The subspecies groups were found to be monophyletic and clearly distinct in mitochondrial haplotypes, and therefore must have had long-independent evolutionary histories. This conflicts with the ring species assignment and supports the formation of secondary contact zones of previously temporarily isolated groups. According to the phylogenetic species concept, all the subspecies groups could be considered as separate species, but if the definition of the biological species concept is followed, none of the subspecies groups is a true species because hybridization still occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.