Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
MRI is a non-invasive biomedical imaging technology that visualizes tissues within the body. Corporeal matter as perceived by MRI straddles definitions of substance, organism, subject, and object. MRI interacts with the body through nuclear magnetic resonance and creates biomedical images using electrodynamics, signal analysis, and mathematics. MRI brings us into contact with the body as a patient, a person, a biological environment, pathology, and as an assemblage of biochemical reactions charted by a medical geography. It reminds us that we contain autonomic organs, tissues, cells, molecules, and that we are atomic, and composed molecularly. In other words, the body acts beyond us. Here, I explore MRI through creative practice, using pan.able to create an embedded and relational assemblage of my practice, and how it interacts with MRI. My point of departure is to identify interfaces in MRI as “places”, sites or moments where separate entities become connected and where a change in force or informational transfer occurs. During an MRI scan, a powerful magnetic field moves across the body-machine interface, interacting with bodily matter on the subatomic level. The interactions of the scanner result in the protons within the subject emitting radio frequency pulses which are detected and transformed into a digital biomedical image using computational processes. Through a practice of “re-corporealisation”, the art practice described in this article explores corporeality and the philosophical concept of the abject as crucial to our subjectivity. This art project examines the MRI process as partly composed of the body-machine and analogue-digital interfaces resulting in artworks that interact with and emerge from MRI. I created sculptures called phantoms using tissue-mimicking materials (TMMs), named after scientific devices of the same name. Phantoms are used in biomedical imaging as stand-ins for human tissue, and used to calibrate, test, and verify scanning protocols. My sculptural phantoms are materials-led objects made to interact at the body-machine interface and be sensed by MRI. They are recognized and treated as semi-figurative body proxies and came to inform my understanding of my personal experience of cancer and medical treatment. I scanned my phantoms at the Francis Crick Institute, London and the Future Technology Centre, Portsmouth, where I was able to explore the potential of an art object as a scientific device and create further parity between them and my medical subjectivity. At the analogue-digital interface, I use weaving (also a body-machine interface) to explore how the signals from the body become biomedical images. I analyze and visually represent the different mathematical properties needed to make an MRI image: frequency, amplitude, phase, sequence, precession, signal-to-noise ratio, real and imaginary numbers. By translating these into images, weave drafts, and weaving them into textural patternings, I create re-corporealised, hand-woven deconstructed reconfigurations of the informational transfers that take place at the analogue-digital interface. The shared lineage of the computer and loom helps me to understand and enact how weaving and computational technologies operate. Part of the process or re-coporealisation was to make MRI processes knowable through my own body and my woven work. MRI makes us aware of different kinds of entanglements: MRI emerges with the body which charts both self and health. Electrons, textiles, signals, TMMs, and movements through the loom are entangled with the phenomenon of corporeal matter, my experience of cancer, and cancer treatment. These entanglements are visualized in my pan.able article through interacting layers, transparencies and opacities, overlapping photographic records of my work, photos of the lab, phantom-making, computer screens, stages of weaving, handwritten notes, sketches, and illustrations. Linking and relinking multiple concepts through patches of transparency helped me to convey how multi-scalar entities and systems in my research and practice are entangled, embodied, and embedded.
MRI is a non-invasive biomedical imaging technology that visualizes tissues within the body. Corporeal matter as perceived by MRI straddles definitions of substance, organism, subject, and object. MRI interacts with the body through nuclear magnetic resonance and creates biomedical images using electrodynamics, signal analysis, and mathematics. MRI brings us into contact with the body as a patient, a person, a biological environment, pathology, and as an assemblage of biochemical reactions charted by a medical geography. It reminds us that we contain autonomic organs, tissues, cells, molecules, and that we are atomic, and composed molecularly. In other words, the body acts beyond us. Here, I explore MRI through creative practice, using pan.able to create an embedded and relational assemblage of my practice, and how it interacts with MRI. My point of departure is to identify interfaces in MRI as “places”, sites or moments where separate entities become connected and where a change in force or informational transfer occurs. During an MRI scan, a powerful magnetic field moves across the body-machine interface, interacting with bodily matter on the subatomic level. The interactions of the scanner result in the protons within the subject emitting radio frequency pulses which are detected and transformed into a digital biomedical image using computational processes. Through a practice of “re-corporealisation”, the art practice described in this article explores corporeality and the philosophical concept of the abject as crucial to our subjectivity. This art project examines the MRI process as partly composed of the body-machine and analogue-digital interfaces resulting in artworks that interact with and emerge from MRI. I created sculptures called phantoms using tissue-mimicking materials (TMMs), named after scientific devices of the same name. Phantoms are used in biomedical imaging as stand-ins for human tissue, and used to calibrate, test, and verify scanning protocols. My sculptural phantoms are materials-led objects made to interact at the body-machine interface and be sensed by MRI. They are recognized and treated as semi-figurative body proxies and came to inform my understanding of my personal experience of cancer and medical treatment. I scanned my phantoms at the Francis Crick Institute, London and the Future Technology Centre, Portsmouth, where I was able to explore the potential of an art object as a scientific device and create further parity between them and my medical subjectivity. At the analogue-digital interface, I use weaving (also a body-machine interface) to explore how the signals from the body become biomedical images. I analyze and visually represent the different mathematical properties needed to make an MRI image: frequency, amplitude, phase, sequence, precession, signal-to-noise ratio, real and imaginary numbers. By translating these into images, weave drafts, and weaving them into textural patternings, I create re-corporealised, hand-woven deconstructed reconfigurations of the informational transfers that take place at the analogue-digital interface. The shared lineage of the computer and loom helps me to understand and enact how weaving and computational technologies operate. Part of the process or re-coporealisation was to make MRI processes knowable through my own body and my woven work. MRI makes us aware of different kinds of entanglements: MRI emerges with the body which charts both self and health. Electrons, textiles, signals, TMMs, and movements through the loom are entangled with the phenomenon of corporeal matter, my experience of cancer, and cancer treatment. These entanglements are visualized in my pan.able article through interacting layers, transparencies and opacities, overlapping photographic records of my work, photos of the lab, phantom-making, computer screens, stages of weaving, handwritten notes, sketches, and illustrations. Linking and relinking multiple concepts through patches of transparency helped me to convey how multi-scalar entities and systems in my research and practice are entangled, embodied, and embedded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.