Coacervates are a
type of liquid–liquid phase separated
(LLPS) droplets that can serve as models of membraneless organelles
(MLOs) in living cells. Peptide–nucleotide coacervates have
been widely used to mimic properties of ribonucleoprotein (RNP) granules,
but the thermal stability and the role of base stacking is still poorly
understood. Here, we report a systematic investigation of coacervates
formed by five different nucleoside triphosphates (NTPs) with poly-
l
-lysine and poly-
l
-arginine as a function of temperature.
All studied combinations exhibit an upper critical solution temperature
(UCST), and a temperature-dependent critical salt concentration, originating
from a significant nonelectrostatic contribution to the mixing free
energy. Both the enthalpic and entropic parts of this nonelectrostatic
interaction decrease in the order G/A/U/C/T, in accordance with nucleobase
stacking free energies. Partitioning of two dyes proves that the local
hydrophobicity inside the peptide–nucleotide coacervates is
different for every nucleoside triphosphate. We derive a simple relation
between the temperature and salt concentration at the critical point
based on a mean-field model of phase separation. Finally, when different
NTPs are mixed with one common oppositely charged peptide, hybrid
coacervates were formed, characterized by a single intermediate UCST
and critical salt concentration. NTPs with lower critical salt concentrations
can remain condensed in mixed coacervates far beyond their original
critical salt concentration. Our results show that NTP-based coacervates
have a strong temperature sensitivity due to base stacking interactions
and that mixing NTPs can significantly influence the stability of
condensates and, by extension, their bioavailability.