We report the results of a series of 1 μs-long explicit-solvent molecular dynamics (MD) simulations performed to compare the free energies of stacking (ΔGstack) of all possible combinations of DNA and RNA nucleoside (NS) pairs and dinucleoside-monophosphates (DNMPs). For both NS-pairs and DNMPs we show that the computed stacking free energies are in reasonable qualitative agreement with experimental measurements, and appear to provide the closest correspondence with experiment yet found among computational studies; in all cases, however, the computed stacking free energies are too favorable relative to experiment. Comparisons of NS-pair systems indicate that stacking interactions are very similar in RNA and DNA systems except when a thymine or uracil base is involved: the presence of a thymine base favors stacking by ~0.3 kcal/mol relative to a uracil base. One exception is found in the self-stacking of cytidines, which are found to be significantly more favorable for the DNA form; an analysis of the rotational orientations sampled during stacking events suggests that this is likely to be due to more favorable sugar-sugar interactions in stacked complexes of deoxycytidines. Comparisons of the DNMP systems indicate that stacking interactions are more favorable in RNA than in DNA except, again, when thymine or uracil bases are involved. Finally, additional simulations performed using a previous generation of the AMBER force field – in which the description of glycosidic bond rotations was less than optimal – produce computed stacking free energies that are in poorer agreement with experimental data. Overall, the simulations provide a comprehensive view of stacking thermodynamics in NS pairs and in DNMPs as predicted by a state-of-the-art MD force field.
Understanding the intrinsic conformational preferences of amino acids and the extent to which they are modulated by neighboring residues is a key issue for developing predictive models of protein folding and stability. Here we present the results of 441 independent explicit-solvent MD simulations of all possible two-residue peptides that contain the 20 standard amino acids with histidine modeled in both its neutral and protonated states. 3Jhnhα coupling constants and δhα chemical shifts calculated from the MD simulations correlate quite well with recently published experimental measurements for a corresponding set of two-residue peptides. Neighboring residue effects (NREs) on the average 3Jhnhα and δhα values of adjacent residues are also reasonably well reproduced, with the large NREs exerted experimentally by aromatic residues, in particular, being accurately captured. NREs on the secondary structure preferences of adjacent amino acids have been computed and compared with corresponding effects observed in a coil library and the average β-turn preferences of all amino acid types have been determined. Finally, the intrinsic conformational preferences of histidine, and its NREs on the conformational preferences of adjacent residues, are both shown to be strongly affected by the protonation state of the imidazole ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.