BackgroundThe world is witnessing a pandemic caused by the novel coronavirus named Covid-19 by WHO that has claimed millions of lives since its advent in December 2019. Several vaccine candidates and treatments have emerged to mitigate the effect of virus, along with came an increased confusion, mistrust on their development, emergency authorization and approval process. Increased job losses, jump in divorce rate, and the generic nature of staying home has also led to various mental health issues.MethodsWe analyzed two publicly available datasets to better understand vaccine hesitancy. The first dataset was extracted from ICPSR Covid-19 database (https://doi.org/10.3886/E130422V1).[1].This cross-sectional survey was conducted to assess the prevalence of vaccine hesitancy in the US, India, and China. The second dataset was obtained from the United States Census Bureau’s Household Pulse Survey (HPS) Phase 3.2.For the ICPSR dataset, proportions and summary statistics are reported to give an overview of the global picture of vaccine hesitancy. The HPS dataset was analyzed using multinomial and binary logistic regression. Chi-square test of independence and exploratory data analysis supplemented provided insight into the casual factors involved in vaccine hesitancy.ResultsICPSR Global DataFor India, 1761 participants completed the survey as of November, 2020 of which 90.2% indicated acceptance of a Covid-19 vaccine. 66.4% are parents of 18 years old or younger, and 79.0% respondent has a parent 50 years or older. Vaccine acceptance rate was 99.8% among 928 out of 1761 participants who had a child. 1392 participants either had a parent or child of which 83.4% will encourage their parents and 90.5% will encourage their children to get the covid-19 vaccine. In this Indian survey, 16.2% identified as belonging to the rural population of which 51.2% showed vaccine hesitancy. A binary logistic regression model with vaccine hesitancy as a dichotomous variable showed that rural population had an odds ratio (OR) of 3.45 (p-value<0.05). Income seems to influence vaccine hesitancy, with income level of (7501-15,000 Indian Rupees (INR)/month) having an OR of 1.41 as compared to other income groups.In the US, 1768 individuals participated in the survey from August-November 2020. 67.3% respondents indicated the will to accept the vaccine. 1129 of them either had a parent or a child, of which 67.6% will take the vaccine; 66% will encourage their parents and 83% will encourage their children for taking the vaccination. 40.3% responded as vaccine hesitant, 31% identified as staying in rural areas, of which 52.5% are vaccine hesitant. In the binary logistic regression analysis, race, past flu shot history, rural living, income turned out to be significant. White race had OR >1 as compared to other races, low-income group (US dollar $2000-4999/month) had an OR of 1.03.In China, there were 1727 participants, of which 1551(90.0%) indicated that they will accept a vaccine. 90.1% of them who had either a parent or child will accept vaccine, 80.4% will influence parents, and 83.4% will encourage children to get vaccination needle in the arm. 30% had vaccine hesitancy. 262 belonged to the rural population, of which 34.8% are vaccine hesitant. Income and Northern region (OR = 3.17) were significant in saying “yes” to a vaccine. High income groups were least resistant (OR=0.96) as compared to other groups.HPS USA dataData used in this study was collected from United States Census Bureau’s Household Pulse Survey (HPS) Phase 3.2 Weeks 34-39, which covers data collected from July 21, 2021, to October 11, 2021. The HPS data helped to understand the effect of several demographic and psychological, and health-related factors upon which responses were provided, thus helping to understand the social and economic effects during the COVID-19 pandemic.ConclusionAmong the three countries, it appears based on this survey that US has the highest rate of vaccine hesitancy. may contribute towards this result gender, education, religious beliefs, disbelief in science, government which remains unexplored due to data limitation.