Bridge cables composed of 1960 MPa steel wires can be damaged during vehicle fires. Therefore, it is necessary to study the high-temperature mechanical properties of steel wires under load-bearing conditions. In this paper, the mechanical properties and microstructure of 1960 MPa steel wire after stress relaxation and high-temperature annealing treatment at different temperatures are investigated. The results show that the stress relaxation limit is 422 MPa at 325 °C. The tensile strength of the steel wire after stress relaxation is 1975 MPa, which decreases by 5.73% compared with the initial state. When the annealing temperature is 300 °C, the tensile strength of the steel wire is 2044 MPa, accounting for 98.7% of the strength of the steel wire at room temperature. The tensile strength decreases by 9% when the annealing temperature is 400 °C, the steel wire strength decreases at a significantly higher rate. In addition, the spacing of the pearlitic sheet layers increases from 55 nm to 75 nm at the heat treatment temperature of 300 °C~350 °C. A passive fire protection temperature of 275 °C is recommended for cable wires if safer protection standards are considered.