Background. Salmonella Typhimurium (STm) remain a prominent cause of bacteremia in sub-Saharan Africa. Complement-fixing antibodies to STm develop by 2 years of age. We hypothesized that STm-specific CD4+ T cells develop alongside this process.Methods. Eighty healthy Malawian children aged 0–60 months were recruited. STm-specific CD4+ T cells producing interferon γ, tumor necrosis factor α, and interleukin 2 were quantified using intracellular cytokine staining. Antibodies to STm were measured by serum bactericidal activity (SBA) assay, and anti-STm immunoglobulin G antibodies by enzyme-linked immunosorbent assay.Results. Between 2006 and 2011, STm bacteremias were detected in 449 children <5 years old. STm-specific CD4+ T cells were acquired in infancy, peaked at 14 months, and then declined. STm-specific SBA was detectable in newborns, declined in the first 8 months, and then increased to a peak at age 35 months. Acquisition of SBA correlated with acquisition of anti–STm–lipopolysaccharide (LPS) immunoglobulin G (r = 0.329 [95% confidence interval, .552–.062]; P = .01) but not anti–STm–outer membrane protein or anti–STm-flagellar protein (FliC).Conclusions. Acquisition of STm-specific CD4+ T cells in early childhood is consistent with early exposure to STm or cross-reactive protein antigens priming this T-cell development. STm-specific CD4+ T cells seem insufficient to protect against invasive nontyphoidal Salmonella disease, but sequential acquisition of SBA to STm LPS is associated with a decline in its incidence.