The toxicity of dental materials has raised public concern over the past years. One of the most commonly used methacrylic monomers for building the three-dimensional structure of the dental resin composites is 2,2-bis[4-(acryloxypropoxy)phenyl]propane (BAPP). The purpose of this study is to evaluate the potential toxicological implication of BAPP on human gingival fibroblasts (HGFs). Flow cytometric, fluorometric, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assays were used to detect the mode of cell death, caspase activities, and cell viability, respectively. In addition, alkaline single-cell gel electrophoresis (COMET) and cytokinesis block micronucleus (MN) assays were applied to evaluate the genotoxicity. According to the results BAPP demonstrated a cytotoxic effect on HGFs in a dose- and time-dependent manner. With increasing concentrations of BAPP, the mode of cell death shifted from apoptosis to necrosis, and the activities of caspases 3, 8, and 9 were also significantly induced. Moreover, a dose-related increase in the number of micronucleus and DNA strand breaks hinted at the expression of genotoxicity by BAPP. In conclusion, the results gathered from this study had demonstrated that BAPP-induced cytotoxicity and genotoxicity on HGFs were mediated by DNA damage and the activation of caspases 3, 8, and 9.