Selection for resistance to acriflavine in
Streptococcus cremoris
resulted in cross-resistance to the drugs neomycin, streptomycin, ethidium bromide, mitomycin C, and proflavine. Furthermore, the mutants showed resistance to lytic bacteriophages to which the parental strain was sensitive, and, unlike the parent, the mutants grew well at higher temperatures (40°C). Revertants selected independently either for temperature sensitivity or for acriflavine sensitivity lost resistance to all the drugs and dyes but retained the bacteriophage resistance phenotype. The acriflavine-resistant mutation resulted in an increase in resistance by the bacterial cells to sodium dodecyl sulfate, a potent solvent of lipopolysaccharide and lipoprotein. It is suggested that the acriflavine resistance mutation determines the synthesis of a membrane substance resistant to higher temperatures.