The reorganization of human hippocampus, especially its interaction with cortex, remains largely undefined in youth. The organization of a single hippocampal long-axis has been predominantly characterized as monotonic1â6, despite recent indications of nonmonotonic features in neuron density7and geometric eigenmodes8. While the human cortical hierarchy has been well recognized for significant developmental and evolutionary advantages9â12, hippocampus has been typically considered an evolutionarily conserved brain structure1,13,14, and overlooked regarding its integrative role of cortical hierarchical processing during development. Here, we corroborated the presence and significance of a dual long-axis representation of the hippocampal connectome and geometry including both linear and quadratic gradients along its long-axis in youth. This finding was robust across two independent large-scale developmental cohorts. Charting development of the dual long-axis gradients underscored their specific contributions to the cortical hierarchy maturation from the frontoparietal and salience/ventral attention networks. The observed developmental variability in spontaneous brain activities in youth parallels the gradients of myelin content. During childhood through adolescence to early adulthood, the hippocampus reorganized the dual long-axis by gradually relaxing its geometric constraints on the intrinsic network organization of cortical spontaneous activity for refined executive functions. Molecular processes underlying such reorganization of the dual long-axis in hippocampus are linked to neural growth, stress hormone regulation, and neuroactive signaling. Our findings enrich the understanding of hippocampal-cortical reorganizational principles across structural, functional, and molecular dimensions as well as its maturation, and define the plasticity distribution within the human hippocampus at systems level, holding potentials to enhance and translate neurodevelopment and neuropsychiatric healthcare.