SummaryData analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed.
Recent models suggest emotion generation, perception, and regulation rely on multiple, interacting large-scale brain networks. Despite the wealth of research in this field, the exact functional nature and different topological features of these neural networks remain elusive. Here, we addressed both using a well-established data-driven meta-analytic grouping approach. We applied k-means clustering to a large set of previously published experiments investigating emotion regulation (independent of strategy, goal and stimulus type) to segregate the results of these experiments into large-scale networks. To elucidate the functional nature of these distinct networks, we used functional decoding of metadata terms (i.e. task-level descriptions and behavioral domains). We identified four large-scale brain networks. The first two were related to regulation and functionally characterized by a stronger focus on response inhibition or executive control versus appraisal or language processing. In contrast, the second two networks were primarily related to emotion generation, appraisal, and physiological processes. We discuss how our findings corroborate and inform contemporary models of emotion regulation and thereby significantly add to the literature.
Functional magnetic resonance imaging (fMRI) is a popular method for in vivo neuroimaging. Modern fMRI sequences are often weighted towards the blood oxygen level dependent (BOLD) signal, which is closely linked to neuronal activity (Logothetis, 2002). This weighting is achieved by tuning several parameters to increase the BOLD-weighted signal contrast. One such parameter is "TE," or echo time. TE is the amount of time elapsed between when protons are excited (the MRI signal source) and measured. Although the total measured signal magnitude decays with echo time, BOLD sensitivity increases (Silvennoinen et al., 2003). The optimal TE maximizes the BOLD signal weighting based on a number of factors, including several MRI scanner parameters (e.g., field strength), imaged tissue composition (e.g., grey vs. white matter), and proximity to air-tissue boundaries.
Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time-consuming, error-prone, and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep ( http://fmriprep.org ), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure (BIDS) to standardize both the input datasets -MRI data as stored by the scanner-and the outputs -data ready for modeling and analysis-, fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep , this protocol describes how to integrate the tool in a task-based fMRI investigation workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.