The ability to voluntarily regulate our emotional response to threatening and highly arousing stimuli by using cognitive reappraisal strategies is essential for our mental and physical well-being. This might be achieved by prefrontal brain regions (e.g. inferior frontal gyrus, IFG) down-regulating activity in the amygdala. It is unknown, to which degree effective connectivity within the emotion-regulation network is linked to individual differences in reappraisal skills. Using psychophysiological interaction analyses of functional magnetic resonance imaging data, we examined changes in inter-regional connectivity between the amygdala and IFG with other brain regions during reappraisal of emotional responses and used emotion regulation success as an explicit regressor. During down-regulation of emotion, reappraisal success correlated with effective connectivity between IFG with dorsolateral, dorsomedial and ventromedial prefrontal cortex (PFC). During up-regulation of emotion, effective coupling between IFG with anterior cingulate cortex, dorsomedial and ventromedial PFC as well as the amygdala correlated with reappraisal success. Activity in the amygdala covaried with activity in lateral and medial prefrontal regions during the up-regulation of emotion and correlated with reappraisal success. These results suggest that successful reappraisal is linked to changes in effective connectivity between two systems, prefrontal cognitive control regions and regions crucially involved in emotional evaluation.
Recent models suggest emotion generation, perception, and regulation rely on multiple, interacting large-scale brain networks. Despite the wealth of research in this field, the exact functional nature and different topological features of these neural networks remain elusive. Here, we addressed both using a well-established data-driven meta-analytic grouping approach. We applied k-means clustering to a large set of previously published experiments investigating emotion regulation (independent of strategy, goal and stimulus type) to segregate the results of these experiments into large-scale networks. To elucidate the functional nature of these distinct networks, we used functional decoding of metadata terms (i.e. task-level descriptions and behavioral domains). We identified four large-scale brain networks. The first two were related to regulation and functionally characterized by a stronger focus on response inhibition or executive control versus appraisal or language processing. In contrast, the second two networks were primarily related to emotion generation, appraisal, and physiological processes. We discuss how our findings corroborate and inform contemporary models of emotion regulation and thereby significantly add to the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.