Stress corrosion cracking test methods of corrosion-resistant alloys are reviewed. The interest to write a review on this topic was drawn by demands for oil country tubular goods applicable in deep wells with high pressures, high temperatures, and the presence of H 2 S, where stress corrosion cracking is one of the most critical failure modes. All conventional methods for determining the stress corrosion cracking resistance of an alloy, mainly slow strain rate testing, constant load testing (tensile, 4-PB), constant strain testing (U-bend, C-ring), and fracture mechanics (double cantilever beam sample) are covered. Considering the variety of testing solutions, the field of search is narrowed to hot (up to 250°C) aqueous chloride solutions with dissolved H 2 S and CO 2 gases under high pressure (up to 200 bar total pressure).