For road tunnels in most Nordic countries, temporary rock support installed during tunnel excavation usually becomes a part of the permanent rock support. Rock bolts are the most common rock support measure in road tunnels excavated in hard rock, and their conditions over the period of tunnel operation play a significant role in the safety of these tunnels. The rock bolt types and aggressive environmental conditions considered in this research are focused on those used and observed in Norwegian and Swedish road tunnels. Findings elsewhere in similar environments are included to highlight the different kinetics of degradation. Based on the collected data, the corrosion levels in these road tunnels are comparable to those in the most polluted industrial areas. Aggressive groundwater conditions for rock bolts include a groundwater pH below four (which can be caused by sulfuric acid formation due to the oxidation of the mineral pyrite in the rock), marine groundwater, and flowing groundwater with a high concentration of dissolved oxygen. Furthermore, chloride-bearing deicing salts commonly used on roads located in cold climate regions during winter can promote corrosion in rock bolts from the tunnel room. For these environments, this research proposes a lognormal probability function to quantify the expected steel corrosion level for 25, 50, and 100 years of exposure time. The corrosion protection given by cement grouting, hot-dip galvanizing and epoxy coating are also addressed to explore their contributions to the lifespan extension of rock bolts in acidic and chloride-rich environments.