GRAPHICAL ABSTRACTThe adsorption and corrosion inhibition behavior of synthesized Schiff base-based cationic gemini surfactant bis [p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene]thiourea (14-S-14) on mild steel in 20% formic acid in the temperature range of 30 C to 60 C was evaluated using weight loss measurements, solvent analysis of iron ions and potentiodynamic polarization measurements. The synthesized inhibitor was characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thin layer chromatography (TLC). The surface morphology of the corroded mild steel specimen was evaluated using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), and atomic force microscopy (AFM). Thermodynamic/kinetic parameters were calculated to elaborate the adsorption and corrosion inhibition mechanism of the inhibitor. The inhibition efficiency of the compound was found to vary with inhibitor concentration, immersion time, and temperature. The adsorption of the compound on the steel surface was found to obey Langmuir adsorption isotherm.