Although the neural circuitry underlying homeostatic sleep regulation is little understood, cortical neurons immunoreactive for neuronal nitric oxide synthase (nNOS) and the neurokinin-1 receptor (NK1) have been proposed to be involved in this physiological process. By systematically manipulating the durations of sleep deprivation and subsequent recovery sleep, we show that activation of cortical nNOS/NK1 neurons is directly related to non-rapid eye movement (NREM) sleep time, NREM bout duration, and EEG δ power during NREM sleep, an index of preexisting homeostatic sleep drive. Conversely, nNOS knockout mice show reduced NREM sleep time, shorter NREM bouts, and decreased power in the low δ range during NREM sleep, despite constitutively elevated sleep drive. Cortical NK1 neurons are still activated in response to sleep deprivation in these mice but, in the absence of nNOS, they are unable to up-regulate NREM δ power appropriately. These findings support the hypothesis that cortical nNOS/NK1 neurons translate homeostatic sleep drive into up-regulation of NREM δ power through an NO-dependent mechanism.T he electrical activity of the cerebral cortex has been used to distinguish sleep vs. wakefulness since the earliest EEG studies of sleep (1). Several neural circuits have been implicated in the synchronization and desynchronization of cortical activity that distinguish non-rapid eye movement sleep (NREM) from wakefulness and rapid eye movement sleep (REM). Input from the basal forebrain (BF), likely from both cholinergic and noncholinergic neurons, is critical for the desynchronized EEG characteristic of wakefulness and REM (2, 3). Synchronization of the EEG during NREM depends on thalamic as well as intrinsic cortical oscillators (4).The firing rate of cortical neurons has generally been reported to be reduced during NREM relative to wakefulness and REM (5, 6). A few studies have reported cortical neurons with the opposite pattern. For example, 4 of 177 neurons in the monkey orbitofrontal cortex increased their firing rates during NREM (7). In the cat parietal cortex, 25% of neurons discharged in phase with NREM slow waves during up states but ceased firing during quiet wakefulness (8).Using Fos immunohistochemistry as a marker of cellular activity, we described a population of cortical GABAergic interneurons that are activated during sleep in three species (9, 10). These neurons express neuronal nitric oxide synthase (nNOS) and thus likely release nitric oxide (NO) as well as GABA (11). The percentage of activated cortical nNOS neurons was proportional to NREM δ energy (NRDE), the product of NREM time and NREM EEG δ power. Because NREM time and δ power increase in response to prolonged wakefulness through a regulated process referred to as sleep homeostasis, NRDE is an electrophysiological marker of homeostatic sleep "drive." Consequently, activation of cortical nNOS neurons during sleep seems to be related to the sleep need that accrues during wakefulness.Cortical nNOS neurons receive cholinergic (12), monoamin...