As in other primates, the lateral geniculate nucleus (LGN) of owl monkeys contains three anatomically and physiologically distinct relay cell classes, the magnocellular (M), parvocellular (P), and koniocellular (K) cells. M and P LGN cells send axons to the upper and lower tiers of layer IV, and K cells send axons to the cytochrome oxidase (CO) blobs of layer III and to layer I of primary visual cortex (V1). Our objective was to compare the synaptic arrangements made by these axon classes. M, P, and K axons were labeled in adult owl monkeys by means of injections of wheat germ agglutinin-horseradish peroxidase into the appropriate LGN layers. The neurochemical content of both pre- and postsynaptic profiles were identified by postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) and glutamate. Our key finding is that the synaptic arrangements made by M, P, and K axons in owl monkey exhibit more similarities than differences. They are exclusively presynaptic, contain glutamate and form asymmetric synapses mainly with glutamate-positive dendritic spines. The majority of the remaining axons synapse with glutamatergic dendritic shafts. There are also differences between LGN pathways. M and P terminals are significantly larger and more likely to make multiple synapses than K axons, although M and P axons do not differ from each other in either of these characteristics. Of interest, a larger percentage of M and K axons than P axons make synapses with GABAergic dendritic shafts. Cells directly postsynaptic to M and K axons are known to exhibit orientation selectivity and, in some cases, direction selectivity. Cells postsynaptic to P axons do not show these properties, but instead tend to reflect their LGN inputs more faithfully; therefore, it is possible that these physiologic differences seen in the cortical cells postsynaptic to different LGN pathways reflect the differential involvement of inhibitory circuits.