Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a largescale dendrochronological study. We find significant regional-and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO 2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO 2 concentration. drought impacts | climate change | dendrochronology | normalized difference vegetation index | ecology C ircumpolar boreal forests are estimated to store âŒ53.9 Pg of carbon or âŒ14% of terrestrial vegetation biomass (1). These regions are currently experiencing accelerated changes, including warmer and longer growing seasons, tree line expansion, species migration, increased frequency and severity of drought, and increases in the frequency and severity of disturbances (2-10). These changes create uncertainty about the boreal forests' future role in the global carbon cycle (11). Adding to this uncertainty is the discrepancy over recent changes in the productivity of boreal and other northern latitude forests. Some empirical evidence suggests increases in the forest productivity (12)(13)(14), whereas other studies suggest decreasing productivity over the last decades (7,8,(15)(16)(17). Furthermore, inversion and process-based ecosystem models indicate large carbon sinks (7,8), whereas field-based bottom-up approaches suggest smaller carbon sinks or small carbon sources (3, 18), or large sinks (19). Quantifying