The pyrovanadates β-Mn 2 V 2 O7 and β-Cu 2 V 2 O7 were previously investigated as photoanode materials for water splitting. Neither of them, however, was found to be sufficiently active. In this work, we predict the properties of these two structurally similar pyrovanadates upon Cu/Mn substitution in their corresponding lattices via density functional theory calculations to explore the suitability of their band structure for water splitting and to assess their ease of synthesis. We predict that a concentration of up to 20% Cu and Mn into β-Mn 2 V 2 O7 and β-Cu 2 V 2 O7, respectively, leads to a narrowing of the bandgap, which, in the former case, is experimentally confirmed by UV-vis spectroscopy. Calculations in the intermediate composition range, however, yield nearly constant bandgaps. Moreover, we predict the materials with higher substitution levels to be increasingly difficult to synthesize, implying that low substitution levels are most relevant in terms of bandgaps and ease of synthesis.