Cathode materials commonly experience volumetric changes that can reduce the cycle life of lithium-based rechargeable batteries. To improve stability in performance, materials must be designed to be structurally invariant throughout electrochemical cycling. Zero-strain cathode materials refer to those cathode materials that undergo negligible or zero volumetric changes during cell cycling. These can provide various benefits, including a high battery operating voltage, high capacity, and long-term stability. In this review, we summarize the problems of conventional cathode active materials originating from volumetric changes with the origin of strains and discuss the zero-strain behavior of the cathode. Recent advancements in the validation of engineering strategies to enhance cathode performance based on zero-strain behavior and identification of reaction mechanisms in zero-strain cathodes are highlighted. Further, analytical methods are introduced that can be used to demonstrate the strain behavior of cathodes with suppressed volumetric changes. Finally, a comprehensive outlook on the future direction of research on materials with zero-strain behavior is provided.