Lithium‐rich, manganese‐based layered oxides are considered one of the most valuable cathode materials for the next generation of high‐energy density lithium‐ion batteries (LIBs) for their high specific capacity and low cost. However, their practical implementation in LIBs is hindered by the rapid voltage/capacity decay on cycling and the long‐standing contradictions between redox kinetics and volumetric energy density due to their poor calendaring compatibility. Herein, a coherent near‐zero‐strain interphase is constructed on the grain boundaries of cathode secondary particles by infusing LiAlO2 material through the reactive infiltration method (RIM). Theoretical calculations, multi‐scale characterizations, and electrochemical tests show that this coherent interphase with near‐zero‐strain feature upon electrochemical (de)lithiation inhibits volume changes of the lattice and structural degradation of cathode primary particles during cycling. More importantly, the ionically conductive LiAlO2 nanolayer infiltrated in the grain boundaries of cathode secondary particles can not only promote the rapid Li+ migration and act as a barrier to protect the material from the corrosion of the electrolyte but also effectively improve the mechanical strength of the cathode secondary particles. Collectedly, the LiAlO2‐infiltrated cathode materials display superior electrochemical cyclability, enhanced rate capability, and industrial calendaring performance, marking a significant step toward commercial implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.