The performance of a new vertical-axis wind turbine rotor based on the mathematical equation of the cycloid is analyzed and compared through simulation and experimental testing against a semicircular or S-type rotor, which is widely used. The study examines three cases: equalizing the diameter, chord length and the area under the curve. Computational Fluid Dynamics (CFD) was used to simulate these cases and evaluate moment, angular velocity and power. Experimental validation was carried out in a wind tunnel that was designed and optimized with the support of CFD. The rotors for all three cases were 3D printed in resin to analyze their experimental performance as a function of wind speed. The moment and Maximum Power Point (MPP) were determined in each case. The simulation results indicate that the cycloid-type rotor outperforms the semicircular or S-type rotor by 15%. Additionally, experimental evidence confirms that the cycloid-type rotor performs better in all three cases. In the MPP analysis, the cycloid-type rotor achieved an efficiency of 10.8% which was 38% better than the S-type rotor.