In this paper, a new algorithm is proposed based on coupled dictionary learning with mapping function for the problem of single-image super-resolution. Dictionaries are designed for a set of clustered data. Data is classified into directional clusters by correlation criterion. The training data is structured into nine clusters based on correlation between the data patches and already developed directional templates. The invariance of the sparse representations is assumed for the task of super-resolution. For each cluster, a pair of high-resolution and low-resolution dictionaries are designed along with their mapping functions. This coupled dictionary learning with a mapping function helps in strengthening the invariance of sparse representation coefficients for different resolution levels. During the reconstruction phase, for a given low-resolution patch a set of directional clustered dictionaries are used, and the cluster is selected which gives the least sparse representation error. Then, a pair of dictionaries with mapping functions of that cluster are used for the high-resolution patch approximation. The proposed algorithm is compared with earlier work including the currently top-ranked super-resolution algorithm. By the proposed mechanism, the recovery of directional fine features becomes prominent.