The present work aims to establish a generic reforming reaction scheme to evaluate the performance of catalytic reforming systems with the aid of a one‐dimensional heterogeneous dynamic model. The novelty of the numerical model stems from the direct inclusion of interphase (fluid‐to‐particle surface), intraparticle (within particle), and intrareactor heat and mass transport resistances under transient conditions. The developed model accounts for the multicomponent gas mixture physicochemical properties and correlations for calculating mass and heat transfer coefficients. Effective macroscopic properties within the particle are calculated by incorporating diffusivities and conductivities of the porous network characteristics accounting for Knudsen and molecular transport as well as tortuosity and porosity of the overall porous path. The industrial case of a steam‐methane reforming multitubular reactor was studied as the most representative case of the generic reaction scheme, with all mass/energy resistances present under severe pressure and temperature conditions. It was shown that there are notable diffusional limitations within the particle, whereas there are also temperature and partial pressure gradients due to the heat and mass transport resistances in the particle film layer. It is further demonstrated that the proposed model can be utilized as a versatile design tool for catalytic reactor development and optimization.