Spectral-beam-combining (SBC) systems utilizing multiple volume Bragg gratings must be carefully analyzed to maximize channel density and efficiency, and thus output radiance. This analysis grows increasingly difficult as the number of channels in the system increases, and heuristic optimization techniques are useful tools for exploring the limits of these systems. We explore three classes of multigrating SBC systems: cascaded, where each grating adds a new channel to the system in sequence; sandwiched, where several individual gratings are placed together and all channels enter the system at the same facet; and multiplexed, where all of the gratings occupy the same holographic optical element (HOE). Loss mechanisms differ among these three basic classes, and our optimization algorithm shows that the highest channel density for a given minimum efficiency and fixed operating bandwidth is achieved for a cascaded grating system. The multiplexed grating system exhibits the lowest channel density under the same constraints but has the distinct advantage of being realized by a single HOE. For a particular application, one must weigh channel density and efficiency versus system complexity when choosing among these basic classes of SBC systems. Additionally, one may need to consider the effects of finite-width input beams. As input beam radius is reduced, angular clipping effects begin to dominate over spectral interference and crosstalk effects, limiting all three classes of SBC systems in a similar manner.