Recent research has shown that using multiple diverse-bandgap photovoltaic (PV) cells in conjunction with a spectrum splitting optical system can significantly improve PV power generation efficiency. Although volume Bragg gratings (VBGs) can serve as effective spectrum splitters, the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a single holographic spectrum splitter element can be improved by utilizing multiple single volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit the ultimate performance. This work explores broadband two-grating holographic optical elements (HOEs) in multiplexed (single element) and sandwiched-grating arrangements. Particle swarm optimization is used to tailor these systems to the solar spectrum, taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems exhibit performance improvements over single-grating solutions, especially when reduced dispersion is required. Under a ±2° constraint on output angular spread from wavelength dispersion, sandwiched-, multiplexed-, and single-grating systems exhibit power conversion efficiencies of 82.1%, 80.9%, and 77.5%, respectively, compared to an ideal bandpass spectrum splitter. Dispersion performance can be further improved by employing more than two VBGs in the spectrum splitter, but efficiency is compromised by additional cross-coupling effects. Multiplexed-grating systems are especially susceptible to these effects, but have the advantage of utilizing only a single HOE.
Spectral-beam-combining (SBC) systems utilizing multiple volume Bragg gratings must be carefully analyzed to maximize channel density and efficiency, and thus output radiance. This analysis grows increasingly difficult as the number of channels in the system increases, and heuristic optimization techniques are useful tools for exploring the limits of these systems. We explore three classes of multigrating SBC systems: cascaded, where each grating adds a new channel to the system in sequence; sandwiched, where several individual gratings are placed together and all channels enter the system at the same facet; and multiplexed, where all of the gratings occupy the same holographic optical element (HOE). Loss mechanisms differ among these three basic classes, and our optimization algorithm shows that the highest channel density for a given minimum efficiency and fixed operating bandwidth is achieved for a cascaded grating system. The multiplexed grating system exhibits the lowest channel density under the same constraints but has the distinct advantage of being realized by a single HOE. For a particular application, one must weigh channel density and efficiency versus system complexity when choosing among these basic classes of SBC systems. Additionally, one may need to consider the effects of finite-width input beams. As input beam radius is reduced, angular clipping effects begin to dominate over spectral interference and crosstalk effects, limiting all three classes of SBC systems in a similar manner.
Multiplexed volume Bragg gratings can be applied to many types of broad- and narrowband spectral systems. However, there are often deleterious side effects to combining several gratings into a single holographic optical element, including loss of efficiency in diffracted waves of interest and the introduction of spurious waves. Design of these spectral systems requires analysis methods that are flexible and efficient and that take these side effects into account. We present a matrix-based algorithm for determining diffraction efficiencies of significant coupled waves in these multiplexed grating Holographic optical elements (HOEs). Several carefully constructed experiments with spectrally multiplexed gratings in dichromated gelatin verify our conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.