2014
DOI: 10.2139/ssrn.2429487
|View full text |Cite
|
Sign up to set email alerts
|

Coupling High-Frequency Data with Nonlinear Models in Multiple-Step-Ahead Forecasting of Energy Markets' Volatility

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2014
2014
2016
2016

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 70 publications
(82 reference statements)
0
2
0
Order By: Relevance
“…While asymmetric errors are commonly found by the volatility literature, it may be also of interest to see if the models do not over-, or under-predict the term structures systematically. For example Nomikos and Pouliasis (2011); Wang and Wu (2012); Baruník and Křehlík (2014) find majority of forecasting models to over-predict the volatility on petroleum markets. The bias then translates to direct economic losses.…”
Section: Evaluation Of Forecastsmentioning
confidence: 99%
See 1 more Smart Citation
“…While asymmetric errors are commonly found by the volatility literature, it may be also of interest to see if the models do not over-, or under-predict the term structures systematically. For example Nomikos and Pouliasis (2011); Wang and Wu (2012); Baruník and Křehlík (2014) find majority of forecasting models to over-predict the volatility on petroleum markets. The bias then translates to direct economic losses.…”
Section: Evaluation Of Forecastsmentioning
confidence: 99%
“…Whereas the number of models using machine learning is rapidly growing in the academic literature, applications in energy markets are very limited. While several works use neural networks in energy forecasting (Fan et al, 2008;Yu et al, 2008;Xiong et al, 2013;Jammazi and Aloui, 2012;Papadimitriou et al, 2014;Baruník and Křehlík, 2014), we are the first to employ the approach in forecasting of term structures.…”
Section: Introductionmentioning
confidence: 99%