2006
DOI: 10.1016/j.geomphys.2005.06.001
|View full text |Cite
|
Sign up to set email alerts
|

Coverings and fundamental algebras for partial differential equations

Abstract: Following I. S. Krasilshchik and A. M. Vinogradov, we regard PDEs as infinite-dimensional manifolds with involutive distributions and consider their special morphisms called differential coverings, which include constructions like Lax pairs and Backlund transformations. We show that, similarly to usual coverings in topology, at least for some PDEs differential coverings are determined by actions of a sort of fundamental group. This is not a group, but a certain system of Lie algebras, which generalize Wahlquis… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
71
0
1

Year Published

2007
2007
2017
2017

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 26 publications
(72 citation statements)
references
References 15 publications
0
71
0
1
Order By: Relevance
“…The investigation of nonmaximal rank resolving systems could also produce interesting examples. Finally, the group foliation algorithm in conjunction with inductive moving frames may provide a means for constructing coverings of differential equations [16,20].…”
Section: Resultsmentioning
confidence: 99%
“…The investigation of nonmaximal rank resolving systems could also produce interesting examples. Finally, the group foliation algorithm in conjunction with inductive moving frames may provide a means for constructing coverings of differential equations [16,20].…”
Section: Resultsmentioning
confidence: 99%
“…Substitution of (12) into (11) gives a Bäcklund transformation (13) to (15). The inverse Bäcklund transformation appears from substitution of (14) into (10).…”
Section: General Casementioning
confidence: 99%
“…В рамках подхода, позволяющего строить семейства систем E ε при помощи сим-метрии уравнения E, которую нельзя поднять на E ε0 при каком-либо ε 0 , алгебрам симметрий модифицированных систем E соответствуют подалгебры Ли в sym E; в частности, sym E ε0 ⊆ sym E. Аналогичное соотношение справедливо для фунда-ментальных алгебр Ли дифференциальных уравнений [21]: фундаментальные алгеб-ры уравнений E ε порождают однопараметрическое семейство подалгебр Ли в фун-даментальной алгебре уравнения E. По сути, использование модифицированных си-стем с параметром служит наиболее удобным способом вычисления этих структур для уравнений в частных производных. Подчеркнем, что деформации по Гарднеру естественным образом порождают семейства E ε и редукции m ε : E ε → E.…”
Section: заключительные замечанияunclassified