2009
DOI: 10.1007/s00033-009-0012-4
|View full text |Cite
|
Sign up to set email alerts
|

Crack on the boundary of two overlapping domains

Abstract: In this paper, we consider an overlapping domain problem for two elastic bodies. A glue condition of an equality-type is imposed at a given line. Simultaneously, a part of this line is considered to be a crack face with an inequality-type boundary condition describing mutual non-penetration between crack faces. Variational and differential formulations of the problem are considered. We prove a differentiability of the energy functional in the case of rectilinear cracks and find a formula for invariant integral… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
7

Year Published

2012
2012
2019
2019

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(10 citation statements)
references
References 14 publications
0
3
0
7
Order By: Relevance
“…In addition to (8)-(9), we can also write junction conditions included in (6) and in the definition of K :…”
Section: Break Between Rigid and Semirigid Inclusionsmentioning
confidence: 99%
See 1 more Smart Citation
“…In addition to (8)-(9), we can also write junction conditions included in (6) and in the definition of K :…”
Section: Break Between Rigid and Semirigid Inclusionsmentioning
confidence: 99%
“…The results are concerned with a solution existence and qualitative properties of solutions. We can mention many other papers related to equilibrium problems with thin elastic and rigid inclusions and cracks; see [6,7,[10][11][12][13][14]30]. Optimal control problems for such models can be found in [15,[33][34][35].…”
Section: Introductionmentioning
confidence: 98%
“…Предельный переход по параметру δ в задаче (10), (11) В этом пункте исследуется поведение решения задачи равновесия двуслойной упругой конструкции с дефектом в случаях, когда параметр повреждаемости дефекта δ стремится к предельным значениям, δ = 0 и δ = ∞. При каждом фиксированном δ ∈ (0, ∞) задача равновесия (10), (11) имеет вид: (20), (21) имеют место сходимости при δ → 0:…”
Section: постановка задачиunclassified
“…Теорема 3. Для последовательности решений (u δ , v δ ) семейства задач типа (20), (21) имеют место сходимости при δ → ∞:…”
Section: постановка задачиunclassified
See 1 more Smart Citation