Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A plethora of deterministic bounds exist in the literature, ranging from the general Barankin bound to the well-known Cramér-Rao bound (CRB), the latter providing the optimal mean square error performance of locally unbiased estimators. In this contribution, we are interested in the estimation of mixed realand integer-valued parameter vectors. We propose a closed-form lower bound expression leveraging on the general CRB formulation, being the limiting form of the McAulay-Seidman bound. Such formulation is the key point to take into account integer-valued parameters. As a particular case of the general form, we provide closed-form expressions for the Gaussian observation model. One noteworthy point is the assessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model with mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich literature on that topic. A representative carrier-phase based precise positioning example is provided to support the discussion and show the usefulness of the proposed lower bound.