In this paper, a class of nonlinear Riesz space-fractional Schrödinger equations are considered. Based on the standard Galerkin finite element method in space and Crank-Nicolson difference method in time, the semi-discrete and fully discrete systems are constructed. By Brouwer fixed point theorem and fractional Gagliardo-Nirenberg inequality, we prove the fully discrete system is uniquely solvable. Moreover, we focus on a rigorous analysis and consideration of the conservation and convergence properties for the semi-discrete and fully discrete systems. Finally, a linearized iterative finite element algorithm is introduced and some numerical examples are given to confirm the theoretical results.