The Seebeck coefficient, according to Ioffe's approximation, is inversely proportional to carrier density and decreases with doping. Herein, we find that the incorporation of multi-walled carbon nanotubes into rutile TiO2 improves the electrical conductivity and Seebeck coefficient at a low filling fraction of tubes; moreover, the former was due to the lengthening of the mean free path and doping modified carrier mobility for the latter. Tube-oxide mixing also causes significant phonon drag at the interfaces and the reduced thermal conductivity was verified by the promoted figure of merit.