Granger-causality in the frequency domain is an emerging tool to analyze the causal relationship between two time series. We propose a bootstrap test on unconditional and conditional Granger-causality spectra, as well as on their difference, to catch particularly prominent causality cycles in relative terms. In particular, we consider a stochastic process derived applying independently the stationary bootstrap to the original series. Our null hypothesis is that each causality or causality difference is equal to the median across frequencies computed on that process. In this way, we are able to disambiguate causalities which depart significantly from the median one obtained ignoring the causality structure. Our test shows power one as the process tends to non-stationarity, thus being more conservative than parametric alternatives. As an example, we infer about the relationship between money stock and GDP in the Euro Area via our approach, considering inflation, unemployment and interest rates as conditioning variables. We point out that during the period 1999-2017 the money stock aggregate M1 had a significant impact on economic output at all frequencies, while the opposite relationship is significant only at high frequencies.