We present a nested Monte Carlo (NMC) approach implemented on graphics processing units (GPUs) to X-valuation adjustments (XVAs), where X ranges over C for credit, F for funding, M for margin, and K for capital. The overall XVA suite involves five compound layers of dependence. Higher layers are launched first, and trigger nested simulations on-the-fly whenever required in order to compute an item from a lower layer. If the user is only interested in some of the XVA components, then only the sub-tree corresponding to the most outer XVA needs be processed computationally. Inner layers only need a square root number of simulation with respect to the most outer layer. Some of the layers exhibit a smaller variance. As a result, with GPUs at least, error-controlled NMC XVA computations are doable. But, although NMC is naively suited to parallelization, a GPU implementation of NMC XVA computations requires various optimizations. This is illustrated on XVA computations involving equities, interest rate, and credit derivatives, for both bilateral and central clearing XVA metrics.