This research article presents a comprehensive examination of effective stress behavior in internally pressurized cylinders with varying density, utilizing Norton's law as the analytical framework. Our thorough numerical computations encompass a wide array of steels and steel alloys commonly employed in cylinder fabrication, covering five distinct types of anisotropy. The investigation meticulously analyzes the profound impact of anisotropy and the exponent “n” within the creep law. A key insight emerges as the effective stress values for anisotropic materials, particularly in Type‐I and Type‐II, showcase a notable reduction compared to their isotropic counterparts in Type‐III. Moreover, we highlight the active role played by an increasing density parameter in elevating the values of radial, circumferential, axial stress, and effective stress within the rotating cylinder composed of anisotropic materials.