Sn58Bi solder is considered a promising lead-free solder that meets the performance requirements, with the advantages of good wettability and low cost. However, the low melting point characteristic of Sn58Bi poses a serious threat to the high-temperature reliability of electronic products. In this study, Sn58Bi solder alloy based on nickel (Ni) functionalization was successfully synthesized, and the effect of a small amount of Ni on creep properties and hardness of Cu/Sn58Bi/Cu micro solder joints at different temperatures (25 °C, 50 °C, 75 °C, 100 °C) was investigated using a nanoindentation method. The results indicate that the nanoindentation depth of micro solder joints exhibits a non-monotonic trend with increasing Ni content at different temperatures, and the slope of the indentation stage curve decreases at 100 °C, showing that the micro solder joints undergo high levels of softening. According to the observation of indentation morphology, Ni doping can reduce the indentation area and accumulation around the indentation, especially at 75 °C and 100 °C. In addition, due to the severe creep phenomenon at 100 °C, the indentation hardness rapidly decreases. The indentation hardness values of micro solder joints of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu at 100 °C are 14.67 ± 2.00 MPa, 21.05 ± 2.00 MPa, and 20.13 ± 2.10 MPa, respectively. Nevertheless, under the same temperature test conditions, the addition of Ni elements can improve the high-temperature creep resistance and hardness of Cu/Sn58Bi/Cu micro solder joints.