A thermal spray technology high-velocity oxygen fuel (HVOF) was used to deposit NiCoCrAlY as a bond coating between the titanium alloy substrate and top 8 wt% yttria-stabilized zirconia thermal-barrier coating (TBC) deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling and isothermal exposure tests were conducted to evaluate the durability of the TBC. Investigations using OM, SEM, EPMA, and XRD revealed that the thermalsprayed BC makes the TBC more durable in isothermal exposure tests but more short-lived in thermal cycling tests, in comparison to our previous study in which the BC was prepared by EB-PVD. This is because the thermal-sprayed imperfections, such as microcracks and voids, elevate the diffusion resistance and degrade the mechanical properties of the BC, simultaneously. To current TBC systems in which the BC is deposited by HVOF, thermal failure behaviors-such as the formation of the Ti/Al mixture oxides at some individual places in the BC, and the Ti 2 Ni gaps formed around the BC/substrate interface-were also discussed.