Perfluorooctane sulfonic acid (PFOS), a representative perfluorinated surfactant, is an anthropogenic pollutant detected in various environmental and biological matrices. Some laboratory and field work has been conducted to assess the aquatic toxicity of PFOS, but little is known regarding its toxicity threshold to the aquatic ecosystem. In the present study, predicted no-effect concentrations (PNECs) were derived by four different approaches. The interspecies correlation estimation (ICE) program and final acute-to-chronic ratio (FACR) were applied to the development of PNEC based on the toxic mode of action (MOA) of PFOS. By comparison of the different PNECs, the recommended aquatic toxicity thresholds for PFOS are in the range of 0.61 to 6.66 µg/L. Based on comparison of PNEC values, microcosm results, and reported environmental concentrations, PFOS appears not to pose a serious threat to aquatic organisms. The present results demonstrate that MOA is an important consideration for the derivation of reliable PNECs; moreover, the ICE-based species sensitivity distribution (SSD) method can be used to derive PNECs when toxicological data are limited. The application of MOA and ICE for deriving PNEC values in the present study may facilitate studies on using a combination of quantitative structure-activity relationship (QSAR) models and ICE to estimate PNECs.