A new design method for RLC reactive absorbers is presented. This method is based on closed-form solutions to help realize the widest absorption bandwidth for an arbitrarily specified thickness. The solutions for the RLC values of the reactive screen are derived using an equivalent circuit in which the thickness of the substrate used, the permittivity and tangential loss of the substrate, and the frequency are all considered. A perfect match and maximum bandwidth at a design frequency can be achieved with the proposed method. Various aspects of the absorber characteristics, depending on the thickness and loss of the substrate, are analyzed using the presented solutions and electromagnetic (EM) simulations. To validate the proposed design method, an X-band microwave absorber with a crossed-dipole structure patterned on a silver nanowire resistive film is designed, fabricated, and measured. The substrate electrical thickness of the absorber is 70° at 10 GHz, with a permittivity of 2.2. The 90% absorption bandwidth is 8 GHz in the frequency range of 8.2–16.2 GHz. The measured absorption agrees well with the results obtained using circuit and EM simulations.