2011
DOI: 10.1016/j.spa.2011.05.009
|View full text |Cite
|
Sign up to set email alerts
|

Critical point and percolation probability in a long range site percolation model on Zd

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 4 publications
0
3
0
Order By: Relevance
“…Consider the graph having Z as vertex set and all edges of the form {x, x ± e i } and {x, x ± k ⋅ e i } for some k ⩾ 2. It was shown in [9] that the critical probability for Bernoulli bond percolation on this graph converges to that of Z 2 as k → ∞. This result, later generalized in [15], is a particular instance of Schramm's conjecture [7] that the percolation threshold for transitive graphs is a local property.…”
Section: Introductionmentioning
confidence: 77%
See 2 more Smart Citations
“…Consider the graph having Z as vertex set and all edges of the form {x, x ± e i } and {x, x ± k ⋅ e i } for some k ⩾ 2. It was shown in [9] that the critical probability for Bernoulli bond percolation on this graph converges to that of Z 2 as k → ∞. This result, later generalized in [15], is a particular instance of Schramm's conjecture [7] that the percolation threshold for transitive graphs is a local property.…”
Section: Introductionmentioning
confidence: 77%
“…For vertices u ′ , v ′ with v ′ ∈ prog(u ′ ), let dist(u ′ , v ′ ) denote the length of the unique path of short edges from u ′ to v ′ . Then, (9)…”
Section: Comparison Of Different Rangesmentioning
confidence: 99%
See 1 more Smart Citation