The humoral immune response provides specific, long-lived protection against invading pathogens, via immunoglobulin production and other memory functions. IgG, the most abundant immunoglobulin isotype, has the longest half-life and protects against bacterial and viral infections. The neonatal Fc receptor (FcRn) transports IgG across barriers, for example, the placenta, enhancing fetal humoral immunity to levels similar to their mothers'. Importantly, FcRn, by protecting IgG from intracellular degradation, results in an approximately 21-day circulating IgG half-life and high plasma levels; similarly, FcRn recycles albumin and is the portal of entry for enteric cytopathic human orphan (echo) virus infection. Dysregulated immune responses may lead to antibodies against self-antigens (autoantibodies), resulting in organ-specific or systemic autoimmune diseases. Autoantibody-mediated diseases have been treated by nonspecific immunoglobulin-lowering/ modulating therapies, including immunoadsorption, plasma exchange, and high-dose intravenous immunoglobulin. However, targeting FcRn with specific inhibitors results in reduction in only IgG levels. The effectiveness of FcRn inhibitors in autoimmune diseases, including myasthenia gravis and immune thrombocytopenia, provides further evidence that IgG is a primary driver in these autoantibody-mediated diseases. We describe the role of FcRn in human biology, including insights that clinical testing of FcRn inhibitors have provided into FcRn biology and autoimmune disease mechanisms, allowing fact-based speculation on their therapeutic potential.