Background: As Automated Driving Systems (ADS) technology gets assimilated into the market, the driver’s obligation will be changed to a supervisory role. A key point to consider is the driver’s engagement in the secondary task to maintain the driver/user in the control loop. This paper aims to monitor driver engagement with a game and identify any impacts the task has on hazard recognition. Methods: We designed a driving simulation using Unity3D and incorporated three tasks: No-task, AR-Video, and AR-Game tasks. The driver engaged in an AR object interception game while monitoring the road for threatening road scenarios. Results: There was a significant difference in the tasks (F(2,33) = 4.34, p = 0.0213), identifying the game-task as significant with respect to reaction time and ideal for the present investigation. Game scoring followed three profiles/phases: learning, saturation, and decline profile. From the profiles, it is possible to quantify/infer drivers’ engagement with the game task. Conclusion: The paper proposes alternative monitoring that has utility, i.e., entertaining the user. Further experiments with AR-Games focusing on the real-world car environment will be performed to confirm the performance following the recommendations derived from the current test.